
Chris Piech Assignment 5
CS 106A Feb 16, 2017

Assignment #5—ImageShop
Due: 11AM PST on Monday, Feb 26

This assignment may be done in pairs (which is optional, not required)
Y.E.A.H. hours Tuesday February 20 from 7-8PM in 380-380C.

Based on handouts by Marty Stepp, Eric Roberts, Keith Schwarz and Nick Troccoli

You have probably had occasion to use some sort of image-editing software, whether it is Adobe
PhotoshopTM, Adobe IllustratorTM, online image editing tools, or others. In this assignment, you will
build a simple version of one of these image editors that implements several useful operations.

The purpose of this assignment is to practice using arrays (1D and 2D) in your programs to
manipulate images. We provide you with a completed GraphicsProgram called
ImageShopProgram.java that contains all of the user interaction behavior; you have to write the
image manipulation algorithms in a file named ImageShopAlgorithms.java.

This assignment may be done in pairs, or may be done individually. You may only pair up with
someone in the same section time and location. If you work as a pair, comment both members’
names on top of every .java file. Make only one assignment submission; do not turn in two copies.

In general, limit yourself to using Java syntax taught in lecture and textbook parts we have read so
far. If you would like to implement any extensions, please implement them in separate files.
Clearly comment at the top of this file what extensions you have implemented.

Note that this assignment is not as long as this handout implies – there are simply many included
screenshots for each image algorithm! Please also see the Demo JAR posted on the course
website, which provides a way to play around with a completed version of the program.

 – 2 –

Output Comparison
For this assignment, there is a built-in output comparison tool to check your output. In ImageShop,
to compare the displayed image to a particular image file, click “Compare To Image” and select
an image to compare it to. A window will pop up comparing the pixels in those images:

In the starter project’s res/ folder, we include sample images with which to test your algorithms
(or you may add your own). In the output/ folder, we include sample output images for each of
the filters you will implement; in particular, all image screenshots on the pages below are included.
Please see the Demo JAR posted on the course website for more sample output.

ImageShop Overview
As mentioned previously, the starter project contains a completed ImageShopProgram.java file
that displays and handles all onscreen buttons, controls, saving and loading images, and more.
Your work will be in ImageShopAlgorithms.java, where we have left blank methods for each
of the image algorithms you must implement. Specifically, each one accepts a GImage parameter
representing the current onscreen image, and should create and return a new GImage of that image
after that algorithm has been applied. As a reminder, if you have a 2D array of pixels named
pixels, you can create a new GImage with those pixels by saying

GImage image = new GImage(pixels);

You will implement the following image manipulation algorithms:

negative Inverts the colors of an image
greenScreen Removes green pixels so the image can be overlaid on another image
rotateLeft Rotates the pixels 90o counterclockwise from their current state
rotateRight Rotates the pixels 90o clockwise from their current state
flipHorizontal Flips the pixels horizontally (across an imaginary centered vertical line)
translate Moves the positions of the pixels by a given dx, dy offset
blur Averages pixel values with neighbors to produce a “softening” effect
equalize Spreads out pixel intensities to increase contrast

Each algorithm is described in detail on the following pages. Your algorithms should not use
any instance variables; each algorithm can be solved on its own without these. Each algorithm
should work on any image of any size, including very large images or very small images such as
1x1 pixels, etc. When describing the algorithms we may refer to pixels in the format (r, g, b) such
as (24, 191, 65) to indicate a pixel with a red component of 24, green of 191, and blue of 65.

 – 3 –

General Note
You can access the individual components of a single pixel value, and make a new pixel value, by
doing the following:

// get pixel, e.g. from pixelArray
 int pixel = ...

// get individual color components of this pixel
 int redValue = GImage.getRed(pixel);
 int greenValue = GImage.getGreen(pixel);
 int blueValue = GImage.getBlue(pixel);
 int alphaValue = GImage.getAlpha(pixel);

// make a new pixel value (with values r, g, b)
int newRed = ...;
int newGreen = ...;
int newBlue = ...;

 int newPixel = GImage.createRGBPixel(
newRed, newGreen, newBlue);

Algorithm #1: Negative
In this method you should create a new image whose pixels are the inverse of those in the source
image. To convert an image to its inverse, for each pixel, set all three of its red, green, and blue
values to be the inverse of their current color value. The inverse of a color value k is defined as
255 - k. For example, the pixel (110, 52, 236) has an inverse of (145, 203, 19).

smiley-face.png smiley-face-

negative.png

Algorithm #2: Green Screen
Green Screen implements an operation that is used frequently in movies to merge actors into a
background scene. The technique uses a particular range of colors (such as green) to represent a
background that can later be made transparent via software. The most common colors are green
and blue (which give rise to the more specific names green screen and blue screen) because those
colors are most easily differentiated from flesh tones.

 – 4 –

ReyGreenScreen.png Rey-after-GreenScreen.png

Your task in this method is to create a new image whose pixels are the same as those of the source
image, but with any green pixels converted to transparent ones (the image above at right has a
transparent background). Since the green pixels in an image will rarely be precisely equal to Java’s
Color.GREEN, you should treat a pixel as green if its green component is at least twice as large
as the maximum of its red and blue component. The Math.max method may come in handy
here; it takes 2 numbers as parameters and returns the larger one:

 int bigger = Math.max(23, 42); // returns 42
d
To create a transparent pixel, you need to specify a fourth value stored inside a pixel (alongside
its RGB values), called the alpha value (between 0 and 255). An alpha of 0 means the pixel is
completely transparent and will show whatever is beneath it. An alpha of 255 (the default) means
the pixel is completely opaque and will show just the RGB color it stores. Values in between are
partially transparent. Luckily, GImage.createRGBPixel lets you optionally specify the
alpha as a 4th parameter:

 // completely transparent (1, 1, 1) pixel
 int transparentPixel = GImage.createRGBPixel(1, 1, 1, 0);

// completely opaque (1, 1, 1) pixel (no alpha required)
 int opaquePixel = GImage.createRGBPixel(1, 1, 1);

Once an image has been “green-screened”, you can overlay it on top of another image. For
example, we can take our Rey-after-GreenScreen.png image and put it on top of
MilleniumFalcon.png to look like this:

ReyMilleniumFalcon.png

To do this, first run the Green Screen algorithm on an image, and save it to a file. Then, load in
the background image you would like to use, and click “Overlay Image” to overlay another image
on top. Select a previously-saved green-screened image, and it will be added on top.

 – 5 –

Algorithm #3: Rotate Left
In this method you should create a new image whose pixel positions are rotated 90-degrees
counter-clockwise relative to those in the source image.

smiley-face.png smiley-face-

rotateleft.png

For example, the diagram below shows a source image of size 6x4 rotated left to create a result
image of size 4x6; the pixels are indicated by letters just for illustration. Note that the source
image's width may be different from its height, and that the dimensions of the result image reflect
the rotation you have performed; the result image is as wide as the source was tall, and as tall as
the source was wide.

Algorithm #4: Rotate Right
In this method you should create a new image whose pixel positions are rotated 90-degrees
clockwise relative to those in the source image.

smiley-face.png smiley-face-

rotateright.png

For example, the diagram below shows a source image of size 6x4 rotated right to create a result
image of size 4x6; the pixels are indicated by letters just for illustration. Note that the source
image's width may be different from its height, and that the dimensions of the result image reflect
the rotation you have performed; the result image is as wide as the source was tall, and as tall as
the source was wide.

 – 6 –

Algorithm #5: Flip Horizontal
In this method you should create a new image whose pixel positions are flipped across an
imaginary vertical centered line through the image.

smiley-face.png smiley-face-flip-

horizontal.png

For example, the diagram below shows a source image of size 6x4 flipped horizontally to create a
result image of size 6x4; the pixels are indicated by letters just for illustration. Note that the source
image's width may be different from its height, and that the dimensions of the result image should
always be the same as the source image. Additionally, flipping an image horizontally twice should
return it to its original form.

 before flipHorizontal after

 -->

Algorithm #6: Translate
In this method you should create a new image whose pixel coordinates have been shifted in the x-
dimension by an offset of dx pixels, and shifted in the y dimension by an offset of dy pixels, relative
to those in the source image (dx and dy are provided as parameters). For example, if dx is 2 and dy
is -1, the pixels of the source are moved by 2px to the right (positive x) and 1px upward (negative
y). The resulting image is the same size as the source image. For example, if the 6x4 image below
were moved by dx=2 and dy=1, the pixel at (x=2, y=3) labeled as "U" would move to (x=4, y=2).

If shifting a pixel causes it to pass the edge of the image, "wrap" that pixel around to the opposite
side of the image (think of the image as an infinite canvas that "wraps around" on itself in all
directions). For example, if dx is 2 and dy is -1, the pixel at (x=5, y=2) labeled as "R" above would
normally have shifted to (x=7, y=1), but x=7 is off the edge, so we wrap it around to (x=1, y=1) in
the result. Similarly, "D" at (3, 0) moves to (5, 3). The dx and/or dy might be negative or larger
than the overall size of the image. In the example above, translating by a dx of 8, or 14, or 320, or
-4, or -6004, etc., would yield the same result as translating by a dx of 2.

 – 7 –

dx=100, dy=50

smiley-face.png smiley-face-

translate-100-
50.png

dx=-45, dy=-91

smiley-face.png smiley-face-

translate-negative-
45-91.png

Be careful not to confuse the order and meaning of the two indexes in your 2-D array. The first of
the two indexes is the row (y), and the second index is the column (x). pixels[i][j] refers to a
pixel with (x=j, y=i).

Algorithm #7: Blur
In this method you should implement a filter to blur an image. One way to do this is to create a
new image whose pixel values are averaged with the values of their immediate neighbors from the
source image; this simulates a “blurring” effect between pixels.

blur x 1

smiley-face.png smiley-face-

blur.png

blur x 10

smiley-face.png smiley-face-blur-

10x.png

The general idea is that for a given pixel (r, c) located at row r and column c in the source image,
you will change its red, green, and blue components to be the average (rounded down to the nearest
integer) of the nine red, green, and blue components in the pixels at locations (r-1, c-1) through
(r+1, c+1). For example, in the diagram below, the pixel (row 1, column 2) should be modified
to store the average of the nine pixels (0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), and (2,
3). These are the eight neighbors of (1, 2) as well as (1, 2) itself. So the red part of (1, 2) would be
changed from 32 to (84+74+16+66+32+95+28+47+31)/9 = 52. The green component would be
changed from 67 to (22+38+17+53+67+65+49+21+41)/9 = 41. The blue component would be

 – 8 –
changed from 12 to (99+69+18+88+12+35+31+94+51)/9 = 55. Therefore the overall pixel value
at (1, 2) in the result image would be (52, 41, 55).

A special case is the set of pixels along the edges of the image. When blurring those pixels, they
do not have eight neighbors like other pixels do, so the average includes fewer data points. For
example, in the diagram above, the pixel at (0, 0) has no neighbors above or left of it, so it should
become the average of the four pixels (0, 0), (0, 1), (1, 0), and (1, 1). So the red component of (0,
0) would become (14+84+21+66)/4 = 46, and so on. The pixel at (3, 3) has no neighbors below it,
so it should become the average of the six pixels (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), and (3, 4). The
red component of (3, 3) would become (47+31+246+15+60+188)/6 = 97, and so on. Take care
that your algorithm does not crash by trying to access outside the bounds of the array.

A common bug in this algorithm is to try to modify the pixel array in-place. You should not do
this; you should create a new second pixel array to store the result image's pixels. The reason is
because you don't want modifications made to one pixel to impact another pixel in the same pass
over the array. In our previous example, we already stated that pixel (1, 2) should be changed from
(32, 67, 12) to (52, 41, 55). But if you store (52, 41, 55) into this pixel and then use that value for
further calculations on pixels in the same pass over the array, their averages will be incorrect. For
example, when computing the average for pixel (1, 3), the pixel (1, 2) is one of its neighbors. But
you should use that pixel's original value of (32, 67, 12) when computing that average.

Algorithm #8: Equalize
Digital processing can do an amazing job of enhancing a photograph. Consider, for example, the
countryside image below at left. Particularly when you compare it to the enhanced version on the
right, the picture on the left seems hazy. The enhanced version is the result of applying an
algorithm called histogram equalization, which grayscales the image and spreads out the
intensities to increase its effective contrast and make it easier to identify individual features.

equalize

Countryside.png Countryside-equalized.png

Histogram equalization takes advantage of the fact that the human eye perceives some colors as
brighter than others, similar to how it perceives tones of certain sound frequencies as louder than
others. Green, for example, appears brighter than red or blue, which tend to make images appear

(http://en.wikipedia.org/wiki/File:Unequalized_Hawkes_Bay_NZ.jpg)

 – 9 –
darker. Your job is to implement the histogram equalization algorithm, which can be broken down
into the following steps, each of which is well-suited to be decomposed into its own method:

1) Compute the luminosity histogram for the source image
2) Compute the cumulative luminosity histogram from the luminosity histogram
3) Use the cumulative luminosity histogram to modify each pixel to increase contrast

Computing the Luminosity Histogram
To compute the luminosity histogram of the source image, we need to first define luminosity.
Luminosity is a standardized calculation of the “brightness” of a pixel based on its RGB values.
It is described on page 439 of The Art and Science of Java, and was also mentioned briefly in class
with our grayscale example. The luminosity is an integer between 0 and 255, just as the intensity
values for red, green, and blue are. A luminosity of 0 indicates black, a luminosity of 255 indicates
white, and any other color falls somewhere in between. There is a provided method called
computeLuminosity that you can use in ImageShopAlgorithms.java that takes RGB
values for a pixel and returns its luminosity for those values.

 int luminosity = computeLuminosity(red, green, blue);

Now, we want to compute the luminosity histogram of the source image, which represents the
distribution of brightness in the source image. Specifically, it’s an array of 256 integers – one for
each possible luminosity value – where each entry in the array represents the number of pixels in
the image with that luminosity. For example, the entry at index 0 of the array represents the
number of pixels in the image with luminosity 0, the entry at index 1 represents the number of
pixels in the image with luminosity 1, and so on.

Visualization of two images’ luminosity histograms.

An image’s luminosity histogram says a lot about the distribution of brightness throughout the
image. The example above shows the original low-contrast picture of the countryside at the top,
along with its image histogram. The bottom row shows an image and histogram for a high-contrast

 – 10 –
picture. Images with low contrast tend to have histograms more tightly clustered around a small
number of values, while images with higher contrast tend to have histograms that are more spread
out throughout the full possible range of values. We will eventually use this histogram to modify
images to spread their brightness distributions out to be more like the lower image.

Compute the Cumulative Luminosity Histogram
Now we need to take the luminosity histogram from the previous step and from it create the
cumulative luminosity histogram, which is useful later in the algorithm. The cumulative
luminosity histogram is the same size as the regular luminosity histogram; it’s also an array of 256
integers, one for each possible luminosity value. However, instead of each entry in the array
representing the number of pixels in the image with that luminosity, each entry represents the
number of pixels in the image with that luminosity or less. For example, the entry at index 2 of
the array represents the number of pixels in the image with luminosity 0, 1 or 2, the entry at index
3 represents the number of pixels in the image with luminosity 0, 1, 2 or 3, and so on. As an
example, if the first six entries in the image histogram were

0 1 2 3 4 5
1 3 5 7 9 11

the corresponding cumulative histogram would be

0 1 2 3 4 5
1 4 9 16 25 36

As an example, the value at index 3 is 16 because 1+3+5+7 pixels have a luminosity of 3 or less.

Visualization of two images’ luminosity histograms.

An image’s cumulative luminosity histogram says a lot about the distribution of brightness
throughout the image. Notice how the low-contrast image at the top has a sharp transition in its
cumulative luminosity histogram, representing the smaller distribution of luminosity values.
Meanwhile, the normal-contrast image on the bottom has a smoother increase over time. We will

 – 11 –
eventually use this histogram to modify images to spread their brightness distributions out to be
more like the lower image.

Modify Each Pixel To Increase Contrast
Now that we have the cumulative luminosity histogram, we can use it to modify each pixel to
increase the image’s overall brightness and contrast. The key is that we want to modify the image
to spread its luminosity values across as much of the range of possible luminosity values as
we can. We can do this via the following steps:

For each pixel in the source image:

Compute the pixel’s luminosity

 𝑛𝑒𝑤	𝑅, 𝐺, 𝑎𝑛𝑑	𝐵	𝑣𝑎𝑙𝑢𝑒𝑠 = 255	𝑥	 #	456789	:5;<	8=>5?@95;A	B	;<59	45678
C9	8=>5?@95;A

#	;@;D8	456789

Modify the pixel at this location to be a grayscale pixel with the above RGB values

To understand how this works, suppose you had a low-contrast 10-pixel image with luminosities
only between 125-130. The cumulative histogram for this example image could be as follows:

… 125 126 127 128 129 130 …
0 1 3 5 7 9 10 0

To make this image higher contrast, we want to spread these luminosities out so they occupy more
of the range of luminosity values than just 125-130; this will result in more variation among pixel
luminosities, and thus a better image.

For example, let’s take the pixel with luminosity 125. In our cumulative histogram above, there
is only 1 total pixel (this one) with luminosity ≤ 125. Therefore, the percentage of pixels with that
luminosity or less is 1/10 = 10%. Ideally, this pixel would be 10% bright, to use as much of the
luminosity spectrum as possible. The value that achieves this is 10% of 255 (the maximum
luminosity), or 25.5. Thus, we want this pixel to have a luminosity of 25 (round down). One
property of luminosity is that, if the R, G and B values of a pixel are the same, the luminosity is
just this value. Therefore, we can change the pixel at this location to be a grayscale pixel with an
R, G, and B value of 25. Thus, for each pixel we calculate the percentage of pixels with that
luminosity or less, and multiply this by 255 to get a new luminosity for that pixel, which we use
for its R, G and B values.

As another example, let’s take a pixel with luminosity 129. In our cumulative histogram above,
there are 9 pixels with luminosity ≤ 129. Therefore, the percentage of pixels with that luminosity
or less is 9/10 = 90%. Ideally, this pixel would be 90% bright, to use as much of the luminosity
spectrum as possible. The value that achieves this is 90% of 255, or 229.5. Thus, we want this
pixel to have a luminosity of 229 (round down). We therefore change the pixel at this location to
be a grayscale pixel with an R, G, and B = 229.

Notice how a luminosity of 125 is mapped to a new luminosity of 25, and a luminosity of 129 is
mapped to a new luminosity of 229; this dramatically expands the range of luminosity values in
the image, resulting in higher contrast and better detail.

 – 12 –

Possible Extensions
There are many possibilities for optional extra features that you can add if you like, potentially for
a small amount of extra credit. If you are going to do extra features, submit extra files containing
your extended version (ImageShopAlgorithmsExtra.java, ImageShopProgramExtra.java,
etc.). At the top of your .java file in its comment header, you must comment what extra features
you completed. Here are a few ideas:

• Painting tools: add drawing tools like a paint brush, line drawing, a touch-up tool, etc.
• Other filters: add other filters that interest you, such as red-eye reduction or “posterize”

(Shepard Fairey’s iconic design of President Obama’s 2008 campaign poster, which
converted all pixels to the closest equivalent chosen from a highly restricted set of colors).

• Selection tool: use mouse events to implement a selection tool for things like cropping an
image, or for applying a filter to only a portion of an image.

• Other: use your imagination! What other features could you imagine in a program like
this?

Grading
Functionality: Your code should compile without any errors or warnings. We use the Image
Comparison Tool mentioned on page 1 to see that your image exactly matches the one expected.

Style: Follow style guidelines taught in class and listed in the course Style Guide. For example,
use descriptive names for variables and methods. Format your code using indentation and
whitespace. Avoid redundancy using methods, loops, and factoring. Use descriptive comments,
including at the top of each .java file, atop each method, inline on complex sections of code, and
a citation of all sources you used to help write your program. If you complete any extra features,
list them in your comments to make sure the grader knows what you completed. In general, limit
yourself to using Java syntax taught in lecture and textbook parts we have read so far.

As mentioned earlier, you should not use any instance variables to implement the required
parts of this assignment.

Decomposition: Most of the methods you’ll need to write on this assignment are already specified
for you, but you should still work to avoid redundancy. For example, if two or more specified
methods have similar behavior, make one call the other, or make a private method that captures
the redundancy and is called by both. In particular, for Equalize, we highly recommend breaking
down the logic into multiple private methods.

Honor Code: Follow the Honor Code when working on this assignment. Submit your own work
and do not look at others' solutions (outside of your pair, if you are part of a pair). Do not give
out your solution. Do not search online for solutions. Do not place a solution to this assignment
on a public web site or forum. Solutions from this quarter, past quarters, and any solutions found
online, will be electronically compared. If you need help on the assignment, please feel free to
ask.

Copyright © Stanford University and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

